physbo.gp.core.model module

class physbo.gp.core.model.model(lik, mean, cov, inf='exact')[source]

Bases: object

cat_params(lik_params, prior_params)[source]

Concatinate the likelihood and prior parameters

Parameters:
  • lik_params (numpy.ndarray) – Parameters for likelihood

  • prior_params (numpy.ndarray) – Parameters for prior

Returns:

params – parameters about likelihood and prior

Return type:

numpy.ndarray

decomp_params(params=None)[source]

decomposing the parameters to those of likelifood and priors

Parameters:

params (numpy.ndarray) – parameters

Returns:

  • lik_params (numpy.ndarray)

  • prior_params (numpy.ndarray)

eval_marlik(params, X, t, N=None)[source]

Evaluating marginal likelihood.

Parameters:
  • params (numpy.ndarray) – Parameters.

  • X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

  • N (int) – Total number of subset data (if not specified, all dataset is used)

Returns:

  • marlik (float)

  • Marginal likelihood.

export_blm(num_basis)[source]

Exporting the blm(Baysean linear model) predictor

Parameters:

num_basis (int) – Total number of basis

Return type:

physbo.blm.core.model

fit(X, t, config)[source]

Fitting function (update parameters)

Parameters:
  • X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

  • config (physbo.misc.set_config object)

get_cand_params(X, t)[source]

Getting candidate for parameters

Parameters:
  • X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

Returns:

params – Parameters

Return type:

numpy.ndarray

get_grad_marlik(params, X, t, N=None)[source]

Evaluating gradiant of marginal likelihood.

Parameters:
  • params (numpy.ndarray) – Parameters.

  • X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

  • N (int) – Total number of subset data (if not specified, all dataset is used)

Returns:

grad_marlik – Gradiant of marginal likelihood.

Return type:

numpy.ndarray

get_params_bound()[source]

Getting boundary of the parameters.

Returns:

bound – An array with the tuple (min_params, max_params).

Return type:

list

get_post_fcov(X, Z, params=None, diag=True)[source]

Calculating posterior covariance matrix of model (function)

Parameters:
  • X (numpy.ndarray) – inputs

  • Z (numpy.ndarray) – feature maps

  • params (numpy.ndarray) – Parameters

  • diag (bool) – If X is the diagonalization matrix, true.

Return type:

physbo.gp.inf.exact.get_post_fcov

get_post_fmean(X, Z, params=None)[source]

Calculating posterior mean of model (function)

Parameters:
  • X (numpy.ndarray) – inputs

  • Z (numpy.ndarray) – feature maps

  • params (numpy.ndarray) – Parameters

post_sampling(X, Z, params=None, N=1, alpha=1)[source]

draws samples of mean value of model

Parameters:
  • X (numpy.ndarray) – inputs

  • Z (numpy.ndarray) – feature maps

  • N (int) – number of samples (default: 1)

  • alpha (float) – noise for sampling source

Return type:

numpy.ndarray

predict_sampling(X, Z, params=None, N=1)[source]
Parameters:
  • X (numpy.ndarray) – training datasets

  • Z (numpy.ndarray) – input for sampling objective values

  • params (numpy.ndarray) – Parameters

  • N (int) – number of samples (default: 1)

Return type:

numpy.ndarray

prepare(X, t, params=None)[source]
Parameters:
  • X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

  • params (numpy.ndarray) – Parameters.

print_params()[source]

Printing parameters

set_params(params)[source]

Setting parameters

Parameters:

params (numpy.ndarray) – Parameters.

sub_sampling(X, t, N)[source]

Make subset for sampling

Parameters:
  • X (numpy.ndarray) – Each row of X denotes the d-dimensional feature vector of search candidate.

  • t (numpy.ndarray) – The negative energy of each search candidate (value of the objective function to be optimized).

  • N (int) – Total number of data in subset

Returns:

  • subX (numpy.ndarray)

  • subt (numpy.ndarray)