physbo.gp.core.learning module
- class physbo.gp.core.learning.adam(gp, config)[source]
Bases:
online
default
- get_one_update(params, X, t)[source]
- Parameters:
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- class physbo.gp.core.learning.batch(gp, config)[source]
Bases:
object
basis class for batch learning
- init_params_search(X, t)[source]
- Parameters:
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns:
The parameters which give the minimum marginal likelihood.
- Return type:
numpy.ndarray
- one_run(params, X, t, max_iter=None)[source]
- Parameters:
params (numpy.ndarray) – Initial guess for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
max_iter (int) – Maximum number of iterations to perform.
- Returns:
The solution of the optimization.
- Return type:
numpy.ndarray
- run(X, t)[source]
Performing optimization using the L-BFGS-B algorithm
- Parameters:
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns:
The solution of the optimization.
- Return type:
numpy.ndarray
- class physbo.gp.core.learning.online(gp, config)[source]
Bases:
object
base class for online learning
- disp_marlik(params, eval_X, eval_t, num_epoch=None)[source]
Displaying marginal likelihood
- Parameters:
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
eval_X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
eval_t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
num_epoch (int) – Number of epochs
- init_params_search(X, t)[source]
Initial parameter searchs
- Parameters:
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns:
The parameter which gives the minimum likelihood.
- Return type:
numpy.ndarray
- one_run(params, X, t, max_epoch=None, is_disp=False)[source]
- Parameters:
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
max_epoch (int) – Maximum candidate epochs
- Returns:
The solution of the optimization.
- Return type:
numpy.ndarray
- run(X, t)[source]
Run initial search and hyper parameter running.
- Parameters:
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns:
The solution of the optimization.
- Return type:
numpy.ndarray