physbo.gp.predictor module

class physbo.gp.predictor.predictor(config, model=None)[source]

Bases: base_predictor

delete_stats()[source]

Default function to delete status. This function must be overwritten in each model.

Parameters:
  • args

  • kwds

fit(training, num_basis=None)[source]

Fitting model to training dataset

Parameters:
  • training (physbo.variable) – dataset for training

  • num_basis (int) – the number of basis (default: self.config.predict.num_basis)

get_basis(*args, **kwds)[source]
Parameters:
  • args

  • kwds

get_post_fcov(training, test, diag=True)[source]

Calculating posterior variance-covariance matrix of model

Parameters:
  • training (physbo.variable) – training dataset. If already trained, the model does not use this.

  • test (physbo.variable) – inputs

  • diag (bool) – Diagonlization flag in physbo.exact.get_post_fcov function.

Return type:

numpy.ndarray

get_post_fmean(training, test)[source]

Calculating posterior mean value of model

Parameters:
  • training (physbo.variable) – training dataset. If already trained, the model does not use this.

  • test (physbo.variable) – inputs

Return type:

numpy.ndarray

get_post_params(*args, **kwds)[source]
Parameters:
  • args

  • kwds

get_post_samples(training, test, alpha=1)[source]

Drawing samples of mean values of model

Parameters:
  • training (physbo.variable) – training dataset. If already trained, the model does not use this.

  • test (physbo.variable) – inputs (not used)

  • alpha (float) – tuning parameter of the covariance by multiplying alpha**2 for np.random.multivariate_normal.

Return type:

numpy.ndarray

get_predict_samples(training, test, N=1)[source]

Drawing samples of values of model

Parameters:
  • training (physbo.variable) – training dataset. If already trained, the model does not use this.

  • test (physbo.variable) – inputs

  • N (int) – number of samples (default: 1)

Return type:

numpy.ndarray (N x len(test))

prepare(training)[source]

Initializing model by using training data set

Parameters:

training (physbo.variable) – dataset for training

update(training, test)[source]

Default function to update variables. This function must be overwritten in each model.

Parameters:
  • args

  • kwds