physbo.blm.core.model module¶
-
class
physbo.blm.core.model.
model
(lik, prior, options={})[source]¶ Bases:
object
Baysean Linear Model
-
prior
¶ prior distribution of weights
- Type
physbo.blm.prior.gauss
-
lik
¶ kernel
- Type
physbo.blm.lik.gauss
-
nbasis
¶ number of features in random feature map
- Type
int
-
stats
¶ auxially parameters for sampling
- Type
Tuple
-
method
¶ sampling method
- Type
str
-
get_post_fcov
(X, Psi=None, diag=True)[source]¶ calculates posterior covariance of model
- Parameters
X (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps (default: blm.lik.linear.basis.get_basis(X))
diag (bool) – if True, returns only variances as a diagonal matrix (default: True)
- Returns
- Return type
numpy.ndarray
See also
-
get_post_fmean
(X, Psi=None, w=None)[source]¶ calculates posterior mean of model (function)
- Parameters
X (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps
w (numpy.ndarray) – weight
See also
-
get_post_params_mean
()[source]¶ calculates posterior mean of weights
- Returns
- Return type
numpy.ndarray
-
post_sampling
(Xtest, Psi=None, N=1, alpha=1.0)[source]¶ draws samples of mean value of model
- Parameters
Xtest (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps (default:
blm.lik.get_basis(Xtest)
)N (int) – number of samples (default: 1)
alpha (float) – noise for sampling source
- Returns
- Return type
numpy.ndarray
-
predict_sampling
(Xtest, Psi=None, N=1)[source]¶ draws samples from model
- Parameters
Xtest (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature map (default:
blm.lik.get_basis(Xtest)
)N (int) – number of samples (default: 1)
- Returns
- Return type
numpy.ndarray
-
prepare
(X, t, Psi=None)[source]¶ initializes model by using the first training dataset
- Parameters
X (numpy.ndarray) – inputs
t (numpy.ndarray) – target (label)
Psi (numpy.ndarray) – feature maps
See also
-
sampling
(w_mu=None, N=1, alpha=1.0)[source]¶ draws samples of weights
- Parameters
blm (physbo.blm.core.model) – model
w_mu (numpy.ndarray) – mean of weight
N (int) – the number of samples (default: 1)
alpha (float) – noise for sampling source (default: 1.0)
- Returns
samples of weights
- Return type
numpy.ndarray
See also
-