physbo.gp.core.learning module¶
-
class
physbo.gp.core.learning.
adam
(gp, config)[source]¶ Bases:
physbo.gp.core.learning.online
default
-
get_one_update
(params, X, t)[source]¶ - Parameters
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
-
-
class
physbo.gp.core.learning.
batch
(gp, config)[source]¶ Bases:
object
basis class for batch learning
-
init_params_search
(X, t)[source]¶ - Parameters
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns
The parameters which give the minimum marginal likelihood.
- Return type
numpy.ndarray
-
one_run
(params, X, t, max_iter=None)[source]¶ - Parameters
params (numpy.ndarray) – Initial guess for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
max_iter (int) – Maximum number of iterations to perform.
- Returns
The solution of the optimization.
- Return type
numpy.ndarray
-
run
(X, t)[source]¶ Performing optimization using the L-BFGS-B algorithm
- Parameters
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns
The solution of the optimization.
- Return type
numpy.ndarray
-
-
class
physbo.gp.core.learning.
online
(gp, config)[source]¶ Bases:
object
base class for online learning
-
disp_marlik
(params, eval_X, eval_t, num_epoch=None)[source]¶ Displaying marginal likelihood
- Parameters
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
eval_X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
eval_t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
num_epoch (int) – Number of epochs
-
init_params_search
(X, t)[source]¶ Initial parameter searchs
- Parameters
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns
The parameter which gives the minimum likelihood.
- Return type
numpy.ndarray
-
one_run
(params, X, t, max_epoch=None, is_disp=False)[source]¶ - Parameters
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
max_epoch (int) – Maximum candidate epochs
- Returns
The solution of the optimization.
- Return type
numpy.ndarray
-
run
(X, t)[source]¶ Run initial search and hyper parameter running.
- Parameters
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N-dimensional vector that represents the corresponding negative energy of search candidates.
- Returns
The solution of the optimization.
- Return type
numpy.ndarray
-