Input files for Standard mode¶
An example of input file for the standard mode is shown below:
W = 2
L = 4
model = "spin"
lattice = "triangular lattice"
//mu = 1.0
// t = -1.0
// t' = -0.5
// U = 8.0
//V = 4.0
//V'=2.0
J = -1.0
J'=-0.5
// nelec = 8
Basic rules for input files
In each line, there is a set of a keyword (before an ”
=
”) and a parameter(after an ”=
”); they are separated by ”=
”.You can describe keywords in a random order.
Empty lines and lines beginning in a “
//
”(comment outs) are skipped.Upper- and lowercase are not distinguished. Double quotes and blanks are ignored.
There are three kinds of parameters.
- Parameters that must be specified (if not,
vmcdry.out
will stop with error messages), - Parameters that is not necessary be specified (if not, default values are used),
- Parameters that must not be specified (if specified,
vmcdry.out
will stop with error messages).
An example of 3 is transfer \(t\) for the Heisenberg spin system. If you choose “model=spin”, you should not specify “\(t\)”.
- Parameters that must be specified (if not,
We explain each keywords as follows:
Parameters about the kind of a calculation¶
model
Type : String (Choose from
"Fermion Hubbard"
,"Spin"
,"Kondo Lattice"
,"Fermion HubbardGC"
,"SpinGC"
,"Kondo LatticeGC"
) [1]Description : The target model is specified with this parameter;
"Fermion Hubbard"
denotes the canonical ensemble of the Fermion in the Hubbard model(1)¶\[\begin{aligned} H = -\mu \sum_{i \sigma} c^\dagger_{i \sigma} c_{i \sigma} - \sum_{i \neq j \sigma} t_{i j} c^\dagger_{i \sigma} c_{j \sigma} + \sum_{i} U n_{i \uparrow} n_{i \downarrow} + \sum_{i \neq j} V_{i j} n_{i} n_{j}, \end{aligned}\]"Spin"
denotes canonical ensemble in the Spin model( \(\{\sigma_1, \sigma_2\}={x, y, z}\))(2)¶\[\begin{split}\begin{aligned} H &= -h \sum_{i} S_{i z} - \Gamma \sum_{i} S_{i x} + D \sum_{i} S_{i z} S_{i z} \nonumber \\ &+ \sum_{i j, \sigma_1}J_{i j \sigma_1} S_{i \sigma_1} S_{j \sigma_1}+ \sum_{i j, \sigma_1 \neq \sigma_2} J_{i j \sigma_1 \sigma_2} S_{i \sigma_1} S_{j \sigma_2} , \end{aligned}\end{split}\]"Kondo Lattice"
denotes canonical ensemble in the Kondo lattice model(3)¶\[\begin{aligned} H = - \mu \sum_{i \sigma} c^\dagger_{i \sigma} c_{i \sigma} - t \sum_{\langle i j \rangle \sigma} c^\dagger_{i \sigma} c_{j \sigma} + \frac{J}{2} \sum_{i} \left\{ S_{i}^{+} c_{i \downarrow}^\dagger c_{i \uparrow} + S_{i}^{-} c_{i \uparrow}^\dagger c_{i \downarrow} + S_{i z} (n_{i \uparrow} - n_{i \downarrow}) \right\}. \end{aligned}\]"Fermion HubbardGC"
,"SpinGC"
, and"Kondo LatticeGC"
indicate the \(S_z\)-unconserved Fermion in the Hubbard model [Eqn. (1) ], the \(S_z\)-unconserved Spin model [Eqn. (2) ], and the \(S_z\)-unconserved Kondo lattice model [Eqn. (3) ], respectively. Note: Although these flags has a word “GC”(=grandcanonical), the number of electrons are conserved in these system.lattice
Type : String (Choose from
"Chain Lattice"
,"Square Lattice"
,"Triangular Lattice"
,"Honeycomb Lattice"
,"Kagome"
,"Ladder"
)Description : The lattice shape is specified with this parameter; above words denote the one dimensional chain lattice (Fig. 31 (a)), the two dimensional square lattice (Fig. 31 (b)), the two dimensional triangular lattice (Fig. 31 (c)), the two dimensional anisotropic honeycomb lattice (Fig. 32 ), the Kagome Lattice(Fig. 33 ), and the ladder lattice (Fig. 34 ), respectively.
Parameters for the lattice¶
Chain lattice¶
Fig. 31 (a)
L
Type : Integer
Description : The length of the chain is specified with this parameter.
Ladder lattice¶
Fig. 34
L
Type : Integer
Description : The length of the ladder is specified with this parameter.
W
Type : Integer
Description : The number of the ladder is specified with this parameter.
Square lattice , Triangular lattice, Honeycomb lattice, Kagome lattice¶
Square lattice [Fig. 31 (b)], Triangular lattice[Fig. 31 (c)], Honeycomb lattice(Fig. 32 ), Kagome lattice(Fig. 33 )
In these lattices, we can specify the shape of the numerical cell by using the following two methods.
W
,L
Type : Integer
Description : The alignment of original unit cells (dashed black lines in Figs. 31 - 33 ) is specified with these parameter.
a0W
,a0L
,a1W
,a1L
Type : Integer
Description : We can specify two vectors (\({\vec a}_0, {\vec a}_1\)) that surrounds the numerical cell (Fig. 35 ). These vectors should be specified in the Fractional coordinate.
If we use both of these method, vmcdry.out
stops.
We can check the shape of the numerical cell by using a file
lattice.gp
(only for square, trianguler, honeycomb, and kagome
lattice) which is written in the Standard mode. This file can be read by
gnuplot
as follows:
$ gnuplot lattice.gp
Sublattice¶
By using the following parameters, we can force the pair-orbital symmetrical to the translation of the sublattice.
a0Wsub
,a0Lsub
,a1Wsub
,a1Lsub
,Wsub
,Lsub
Type : Positive integer. In the default setting,
a0Wsub=a0W
,a0Lsub=a0L
,a1Wsub=a1W
,a1Lsub=a1L
,Wsub=W
, andLsub=L
. Namely, there is no sublattice.Description : We can specify these parameter as we specify
a0W
,a0L
,a1W
,a1L
,W
,L
. If the sublattice is incommensurate with the original lattice,vmcdry.out
stops.
Parameters for the Hamiltonian¶
A default value is set as \(0\) unless a specific value is not defined in a description. Table [table_interactions] shows the parameters for each models. In the case of a complex type, a file format is ” a real part, an imaginary part ” while in the case of a real type, only ” a real part “.
Local terms¶
mu
Type : Real
Description : (Hubbard and Kondo lattice model) The chemical potential \(\mu\) (including the site potential) is specified with this parameter.
U
Type : Real
Description : (Hubbard and Kondo lattice model) The onsite Coulomb integral \(U\) is specified with this parameter.
Jx
,Jy
,Jz
,Jxy
,Jyx
,Jxz
,Jzx
,Jyz
,Jzy
Type : Real
Description : (Kondo lattice model) The spin-coupling constant between the valence and the local electrons is specified with this parameter. If the exchange coupling
J
is specified in the input file, instead ofJx, Jy, Jz
, the diagonal exchange couplings,Jx, Jy, Jz
, are set asJx = Jy = Jz = J
. When both the set of exchange couplings (Jx
,Jy
,Jz
) and the exchange couplingJ
are specified in the input file,vmcdry.out
will stop.h
,Gamma
,D
Type : Real
Description : (Spin model) The longitudinal magnetic field, transverse magnetic field, and the single-site anisotropy parameter are specified with these parameters. The single-site anisotropy parameter is not available for
model=SpinGCBoost
.
The non-local terms described below should be specified in different
ways depending on the lattice structure: For lattice=Ladder
, the
non-local terms are specified in the different way from
lattice=Chain Lattice
, Square Lattice
, Triangular Lattice
,
Honeycomb Lattice
, Kagome
. Below, the available parameters for
each lattice are shown in Table [table_interactions].
Interactions | 1D chain | 2D square | 2D triangular | Honeycomb | Kagome | Ladder |
---|---|---|---|---|---|---|
J , t , V (simplified) |
OK | OK | OK | OK | OK | NG |
J' , t' , V' |
OK | OK | OK | OK | OK | NG |
J0 , t0 , V0 |
OK | OK | OK | OK | OK | OK |
J1 , t1 , V1 |
NG | OK | OK | OK | OK | OK |
J2 , t2 , V2 |
NG | NG | OK | OK | OK | OK |
J1' , t1' , V1' |
NG | NG | NG | NG | NG | OK |
J2' , t2' , V2' |
NG | NG | NG | NG | NG | OK |
Table: Interactions for each models defined in an input file. We can define spin couplings as matrix format.
Non-local terms for Ladder lattice¶
Fig. 34
t0
,t1
,t1'
,t2
,t2'
Type : Complex
Description : (Hubbard and Kondo lattice model) Hopping integrals in the ladder lattice (See Fig. 34 ) is specified with this parameter.
V0
,V1
,V1'
,V2
,V2'
Type : Real
Description : (Hubbard and Kondo lattice model) Offsite Coulomb integrals on the ladder lattice (Fig. 32 are specified with these parameters.
J0x
,J0y
,J0z
,J0xy
,J0yx
,J0xz
,J0zx
,J0yz
,J0zy
J1x
,J1y
,J1z
,J1xy
,J1yx
,J1xz
,J1zx
,J1yz
,J1zy
J1'x
,J1'y
,J1'z
,J1'xy
,J1'yx
,J1'xz
,J1'zx
,J1'yz
,J1'zy
J2x
,J2y
,J2z
,J2xy
,J2yx
,J2xz
,J2zx
,J2yz
,J2zy
J2'x
,J2'y
,J2'z
,J2'xy
,J2'yx
,J2'xz
,J2'zx
,J2'yz
,J2'zy
Type : Real
Description : (Spin model) Spin-coupling constants in the ladder lattice (See Fig. 34 ) are specified with these parameter. If the simplified parameter
J0
is specified in the input file instead of the diagonal couplings,J0x, J0y, J0z
, these diagonal couplings are set asJ0x = J0y = J0z = J0
. If bothJ0
and the set of the couplings (J0x, J0y, J0z
) are specified,vmcdry.out
will stop. The above rules are also valid for the simplified parameters,J1
,J1'
,J2
, andJ2'
.
Non-local terms for other than Ladder¶
t0
,t1
,t2
Type : Complex
Description : (Hubbard and Kondo lattice model) Nearest neighbor hoppings for each direction (See Figs. 31 -33 . These bonds are depicted with different line styles.) are specified with these parameter. If there is no bond dependence of the nearest-neighbor hoppings, the simplified parameter
t
is available to specifyt0
,t1
, andt2
ast0 = t1 = t2 = t
. If botht
and the set of the hoppings (t0
,t1
,t2
) are specified,vmcdry.out
will stop.V0
,V1
,V2
Type : Real
Description : (Hubbard and Kondo lattice model) Nearest-neighbor offsite Coulomb integrals \(V\) for each direction (See Figs. 31 -33 . These bonds are depicted with different line styles.) are specified with these parameters. If there is no bond dependence of the nearest-neighbor offsite Coulomb integrals, the simplified parameter
V
is available to specifyV0
,V1
, andV2
asV0 = V1 = V2 = V
. If bothV
and the set of the Coulomb integrals (V0
,V1
,V2
) are specified,vmcdry.out
will stop.J0x
,J0y
,J0z
,J0xy
,J0yx
,J0xz
,J0zx
,J0yz
,J0zy
J1x
,J1y
,J1z
,J1xy
,J1yx
,J1xz
,J1zx
,J1yz
,J1zy
J2x
,J2y
,J2z
,J2xy
,J2yx
,J2xz
,J2zx
,J2yz
,J2zy
Type : Real
Description : (Spin model) Nearest-neighbor exchange couplings for each direction are specified with thees parameters. If the simplified parameter
J0
is specified, instead ofJ0x, J0y, J0z
, the exchange couplings,J0x, J0y, J0z
, are set asJ0x = J0y = J0z = J0
. If bothJ0
and the set of the exchange couplings (J0x, J0y, J0z
) are specified,vmcdry.out
will stop. The above rules are valid forJ1
andJ2
.If there is no bond dependence of the nearest-neighbor exchange couplings, the simplified parameters,
Jx
,Jy
,Jz
,Jxy
,Jyx
,Jxz
,Jzx
,Jyz
,Jzy
, are available to specify the exchange couplings for every bond asJ0x = J1x = J2x = Jx
. If any simplified parameter (Jx
\(\sim\)Jzy
) is specified in addition to its counter parts (J0x
\(\sim\)J2zy
),vmcdry.out
will stop. Below, examples of parameter sets for nearest-neighbor exchange couplings are shown.- If there are no bond-dependent, no anisotropic and offdiagonal
exchange couplings (such as \(J_{x y}\)), please specify
J
in the input file. - If there are no bond-dependent and offdiagonal exchange couplings
but are anisotropic couplings, please specify the non-zero
couplings in the diagonal parameters,
Jx, Jy, Jz
. - If there are no bond-dependent exchange couplings but are
anisotropic and offdiagonal exchange couplings, please specify the
non-zero couplings in the nine parameters,
Jx, Jy, Jz, Jxy, Jyz, Jxz, Jyx, Jzy, Jzx
. - If there are no anisotropic and offdiagonal exchange couplings,
but are bond-dependent couplings, please specify the non-zero
couplings in the three parameters,
J0, J1, J2
. - If there are no anisotropic exchange couplings, but are
bond-dependent and offdiagonal couplings, please specify the
non-zero couplings in the nine parameters,
J0x, J0y, J0z, J1x, J1y, J1z, J2x, J2y, J2z
. - If there are bond-dependent, anisotropic and offdiagonal exchange
couplings, please specify the non-zero couplings in the
twenty-seven parameters from
J0x
toJ2zy
.
- If there are no bond-dependent, no anisotropic and offdiagonal
exchange couplings (such as \(J_{x y}\)), please specify
t'
Type : Complex
Description : (Hubbard and Kondo lattice model) Nearest neighbor hoppings for each direction (See Figs. 31 -33 ) are specified with these parameter.
V'
Type : Real
Description : (Hubbard and Kondo lattice model) Nearest neighbor-offsite Coulomb integrals \(V\) for each direction (See Figs. 31 -33 ) are specified with these parameters.
J'x
,J'y
,J'z
,J'xy
,J'yx
,J'xz
,J'zx
,J'yz
,J'zy
Type : Real
Description : (Spin model) Second nearest-neighbor exchange couplings are specified. However, for
lattice = Honeycomb Lattice
andlattice = Kagome
withmodel=SpinGCBoost
, the second nearest-neighbor exchange couplings are not available in the \(Standard\) mode. If the simplified parameterJ'
is specified, instead ofJ'x, J'y, J'z
, the exchange couplings are set asJ'x = J'y = J'z = J'
. If bothJ'
and the set of the couplings (J'x, J'y, J'z
),vmcdry.out
will stop.phase0
,phase1
Type : Double (
0.0
as defaults)Description : We can specify the phase for the hopping through the cell boundary with these parameter (unit: degree). These factors for the \(\vec{a}_0\) direction and the \(\vec{a}_1\) direction can be specified independently. For the one-dimensional system, only
phase0
can be used. For example, a fopping from \(i\)-th site to \(j\)-th site through the cell boundary with the positive direction becomes as\[\begin{aligned} \exp(i \times {\rm phase0}\times\pi/180) \times t {\hat c}_{j \sigma}^\dagger {\hat c}_{i \sigma} + \exp(-i \times {\rm phase0}\times\pi/180) \times t^* {\hat c}_{i \sigma}^\dagger {\hat c}_{j \sigma} \end{aligned}\]
Parameters for the numerical condition¶
nelec
Type : int-type (must be specified)
Description : The number of itinerant electrons. It is the sum of the \(\uparrow\) and \(\downarrow\) electrons.
NVMCCalMode
Type : int-type (default value: 0)
Description : [0] Optimization of variational parameters, [1] Calculation of one body and two body Green’s functions.
NDataIdxStart
Type : int-type (default value: 1)
Description : An integer for numbering of output files. For
NVMCCalMode
= 0 ,NDataIdxStart
is added at the end of the output files. ForNVMCCalMode
= 1, the files are outputted with the number fromNDataIdxStart
toNDataIdxStart
+NDataQtySmp
-1.NDataQtySmp
Type : int-type (default value: 1)
Description : The set number for outputted files (only used for
NVMCCalMode
= 1).NSPGaussLeg
Type : int-type (Positive integer, default value is 8 for
2Sz=0
)Description : The mesh number for the Gauss-legendre quadrature about \(\beta\) integration (\(S_y\) rotation) for the spin quantum-number projection in actual numerical calculation.
NSPStot
Type : int-type ( greater equal 0, default value is 0 for
2Sz=0
)Description : The total spin quantum-number.
2Sz
Type : int-type ( greater equal 0, default value is 0)
Description : The spin quantum-number \(S_z\).
NMPTrans
Type : int-type (Positive integer. Default
1
)Description : The number of the momentum and lattice translational quantum-number projection. In the case of not to apply the projection, this value must be set as 1.
NSROptItrStep
Type : int-type (Positive integer, default value: 1000)
Description : The whole step number to optimize variational parameters by SR method. Only used for
NVMCCalMode
=0.NSROptItrSmp
Type : int-type (Positive integer, default value:
NSROptItrStep
/10)Description : In the
NSROptItrStep
step, the average values of the each variational parameters at theNSROptItrStep
step are adopted as the optimized values. Only used forNVMCCalMode
=0.DSROptRedCut
Type : double-type (default value: 0.001)
Description : The stabilized factor for the SR method by truncation of redundant directions corresponding to \(\varepsilon_{\rm wf}\) in the ref. [Tahara2008 ].
DSROptStaDel
Type : double-type (default value: 0.02)
Description : The stabilized factor for the SR method by modifying diagonal elements in the overwrap matrix corresponding to \(\varepsilon\) in the ref. [Tahara2008 ].
DSROptStepDt
Type : double-type (default value: 0.02)
Description : The time step using in the SR method.
NVMCWarmUp
Type : int-type (Positive integer, default value: 10)
Description : Idling number for the Malkov chain Montecarlo Methods.
NVMCInterval
Type : int-type (Positive integer, default value: 1)
Description : The interval step between samples. The local update will be performed
Nsite
×NVMCInterval
times.NVMCSample
Type : int-type (Positive integer, default value: 1000)
Description : The sample numbers to calculate the expected values.
NExUpdatePath
Type : int-type (Positive integer)
Description : The option for local update about exchange terms. 0: not update, 1: update. The default value is set as 1 when the local spin exists, otherwise 0.
RndSeed
Type : int-type (default value: 123456789)
Description : The initial seed of generating random number. For MPI parallelization, the initial seeds are given by
RndSeed
+my rank+1 at each ranks.NSplitSize
Type : int-type (Positive integer, default value: 1)
Description : The number of processes of MPI parallelization.
NStore
Type : int-type (0 or 1, default value: 1)
Description : The option of applying matrix-matrix product to calculate expected values \(\langle O_k O_l \rangle\) (0: off, 1: on). This speeds up calculation but increases the amount of memory usage from \(O(N_\text{p}^2)\) to \(O(N_\text{p}^2) + O(N_\text{p}N_\text{MCS})\), where \(N_\text{p}\) is the number of the variational parameters and \(N_\text{MCS}\) is the number of Monte Carlo sampling.
NSRCG
Type : int-type (0 or 1, default value: 0)
Description : The option of solving \(Sx=g\) in the SR method without constructing \(S\) matrix [NeuscammanUmrigarChan ]. (0: off, 1: on). This reduces the amount of memory usage from \(O(N_\text{p}^2) + O(N_\text{p}N_\text{MCS})\) to \(O(N_\text{p}) + O(N_\text{p}N_\text{MCS})\) when \(N_\text{p} > N_\text{MCS}\).
ComplexType
Type : int-type (
0
or1
. Default value is0
for the \(S_z\)-conserved system and1
for the \(S_z\)-unconserved system.)Description : If it is
0
, only the real part of the variational parameters are optimized. And the real and the imaginary part of them are optimized if this parameter is1
.OutputMode
Type : Choose from
"none"
,"correlation"
, and"full"
(correlation
as a default)Description : Indices of correlation functions are specified with this keyword.
"none"
indicates correlation functions will not calculated. Whenoutputmode="correlation"
, the correlation function supported by the utilityfourier
is computed. For more details, see the document indoc/fourier/
. If"full"
is selected, \(\langle c_{i \sigma}^{\dagger}c_{j \sigma'} \rangle\) is computed at all \(i, j, \sigma, \sigma'\), and \(\langle c_{i_1 \sigma}^{\dagger}c_{i_2 \sigma} c_{i_3 \sigma'}^{\dagger}c_{i_4 \sigma'} \rangle\) is computed at all \(i_1, i_2, i_3, i_4, \sigma, \sigma'\).In spin system, indices are specified as those on the Bogoliubov representation (See [sec_bogoliubov_rep]).
CDataFileHead
Type : string-type (default :
"zvo"
)Description : A header for output files. For example, the output filename for one body Green’s function becomes ” xxx_cisajs_yyy.dat” (xxx are characters set by
CDataFileHead
and yyy are numbers given by numbers fromNDataIdxStart
toNDataIdxStart
+NDataQtySmp
).CParaFileHead
Type : string-type (default :
"zqp"
)Description : A header for output files of the optimized variational parameters. For example, the optimized variational parameters are outputted as zzz_opt_yyy.dat (zzz are characters set by
CParaFileHead
and yyy are numbers given by numbers fromNDataIdxStart
toNDataIdxStart
+NDataQtySmp
-1).
[1] | GC=Grand Canonical |