Overview¶
In this document, we introduce how we compute downfolded models with mVMC or \({\mathcal H}\Phi\) in conjunction to RESPACK.
\[\begin{split}\begin{aligned}
{\cal H} &=
\sum_{i, j, \alpha, \beta, \sigma}
t_{i \alpha j \beta} c_{i \alpha \sigma}^{\dagger} c_{j \beta \sigma}
\nonumber \\
&+ \sum_{i, \alpha}
U_{i \alpha i \alpha} n_{i \alpha \uparrow} n_{j \alpha \downarrow}
+ \sum_{(i, \alpha) \lt (j, \beta)}
U_{i \alpha j \beta} n_{i \alpha} n_{j \beta}
- \sum_{(i, \alpha) \lt (j, \beta)}
J_{i \alpha j \beta} (n_{i \alpha \uparrow} n_{j \beta \uparrow}
+ n_{i \alpha \downarrow} n_{j \beta \downarrow})
\nonumber \\
&+ \sum_{(i, \alpha) \lt (j, \beta)}
J_{i \alpha j \beta} (
c_{i \alpha \uparrow}^{\dagger} c_{j \beta \downarrow}^{\dagger}
c_{i \alpha \downarrow} c_{j \beta \uparrow} +
c_{j \beta \uparrow}^{\dagger} c_{i \alpha \downarrow}^{\dagger}
c_{j \beta \downarrow} c_{j \alpha \uparrow} )
\nonumber \\
&+ \sum_{(i, \alpha) \lt (j, \beta)}
J_{i \alpha j \beta} (
c_{i \alpha \uparrow}^{\dagger} c_{i \alpha \downarrow}^{\dagger}
c_{j \beta \downarrow} c_{j \beta \uparrow} +
c_{j \beta \uparrow}^{\dagger} c_{j \beta \downarrow}^{\dagger}
c_{i \alpha \downarrow} c_{i \alpha \uparrow} )
\end{aligned}\end{split}\]
Prerequisite¶
We compute the Kohn-Sham orbitals with QuantumESPRESSO or xTAPP, and obtain the Wannier function, the dielectric function, the effective interaction with RESPACK, and simulate quantum lattice models with mVMC or \({\mathcal H}\Phi\). Therefore, these programs must be available in our machine.