physbo package
Subpackages
Submodules
- physbo.predictor module
BasePredictorBasePredictor.delete_stats()BasePredictor.fit()BasePredictor.get_basis()BasePredictor.get_permutation_importance()BasePredictor.get_post_fcov()BasePredictor.get_post_fmean()BasePredictor.get_post_params()BasePredictor.get_post_params_samples()BasePredictor.get_post_samples()BasePredictor.get_predict_samples()BasePredictor.load()BasePredictor.prepare()BasePredictor.save()BasePredictor.update()
Module contents
- class physbo.Variable(X=None, t=None, Z=None)[ソース]
ベースクラス:
objectVariable class
Variable class represents a set of pairs of input (X) and output (t).
- X: ndarray
Points in the search space. N x d dimensional array, where N is the number of points and d is the dimension of the search space.
- Z: ndarray
Random basis representation of the search candidates for each objective. k x N x n dimensional array, where k is the number of objectives, N is the number of points, and n is the dimension of the random basis.
- add(X=None, t=None, Z=None)[ソース]
Adding variables of X, t, Z.
- パラメータ:
X (numpy array) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate.
t (numpy array) -- N dimensional array (single-objective) or N x k dimensional matrix (multi-objective). The negative energy of each search candidate (value of the objective function to be optimized).
Z
- delete(num_row)[ソース]
Deleting variables of X, t, Z whose indexes are specified by num_row.
- パラメータ:
num_row (numpy array) -- Index array to be deleted.
- get_subset(index)[ソース]
Getting subset of variables as a new Variable.
- パラメータ:
index (int or array of int) -- Index of selected action.
- 戻り値:
variable
- 戻り値の型:
- load(file_name)[ソース]
Loading variables X, t, Z from the file.
- パラメータ:
file_name (str) -- A file name for loading variables X, t, Z using numpy.load.
- save(file_name)[ソース]
Saving variables X, t, Z to the file.
- パラメータ:
file_name (str) -- A file name for saving variables X, t, Z using numpy.savez_compressed.
- t: ndarray
Values of the objective functions to be maximized for each point. N x k dimensional array, where N is the number of points and k is the number of objectives.