physbo.search.score_multi module
- physbo.search.score_multi.EHVI(fmean, fstd, pareto)[ソース]
Calculate Expected Hyper-Volume Improvement (EHVI).
Reference: (Couckuyt et al., 2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
- パラメータ:
fmean (numpy.ndarray) -- mean of the predictive distribution
fstd (numpy.ndarray) -- standard deviation of the predictive distribution
pareto (Pareto object) -- Pareto object
- 戻り値:
score -- score of the candidate
- 戻り値の型:
numpy.ndarray
- physbo.search.score_multi.HVPI(fmean, fstd, pareto)[ソース]
Calculate Hypervolume-based Probability of Improvement (HVPI).
Reference: (Couckuyt et al., 2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
- パラメータ:
fmean (numpy.ndarray) -- mean of the predictive distribution
fstd (numpy.ndarray) -- standard deviation of the predictive distribution
pareto (Pareto object) -- Pareto object
- 戻り値:
score -- score of the candidate
- 戻り値の型:
numpy.ndarray
- physbo.search.score_multi.TS(predictor_list, training_list, test, alpha=1, reduced_candidate_num=None)[ソース]
Thompson Sampling for multi-objective optimization.
- パラメータ:
predictor_list (list of Predictor) -- List of predictors for each objective.
training_list (list of Variable) -- List of training data for each objective.
test (Variable) -- Test points.
alpha (float, optional) -- Scaling parameter for sampling from posterior distribution. Default is 1.
reduced_candidate_num (int, optional) -- Number of candidates to randomly select for Pareto front calculation. If None or less than number of test points, all points are used. Default is None.
- 戻り値:
score_res -- Score array with 1 at the chosen index and 0 elsewhere.
- 戻り値の型:
numpy.ndarray